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Ten Years in the Making- AUSM-family

Meng-Sing Lieu

National Aeronautics and Space Administration
Glenn Research Center

21000 Brookpark Road
Cleveland, Ohio 44135

We begin by describing the motivations that gave birth to the original AUSM scheme

and then focus on the ingredients that has spurred its growth and acceptance by the world

of computational fluid dynamics. As it has played out more in the field, weaknesses have

also surfaced. Hence, nutrients and supplements are prescribed to help it grow and stay

strong and robust. In this paper, We will describe the saga of efforts owing to researchers

who have contributed to building up the AUSM-family for the CFD community. It is

hoped that a healthy scheme will contribute to the accurate and robust solution of prob-

lems encountered in a wide range of disciplines. We analyze numerical mass fluxes with

an emphasis on their capability for accurately capturing shock and contact discontinu-

ities. We will present a new scheme for the pressure flux, along with results for a host of

test problems.

Introduction

ONSIDERABLE progress in CFD has been made
in solving equations of conservation laws over the

last two decades, particularly in devising accurate and

robust schemes for capturing shock and contact discon-

tinuities. The ability to predict shock and contact dis-

continuities cart be considered a prerequisite for a reli-
able and accurate solution to both inviscid and viscous

problems. The 1980s witnessed an explosive interest.

and research in upwind schemes for their capability of

achieving high accuracy over a wide range of problems

described by Euler or Navier-Stokes equations. Today,
upwind schemes undoubtedly have become the main

spatial discretization techniques adopted into nearly

all major research and commercial codes. Yet some

deficiencies or failures have been experienced by some

upwind schemes, such as shock instability in multidi-

mensions, creation of traveling waves in slowly moving

shock, 1 and violation of positivity-preservingfl As

CFD is being used more routinely and extended to

more complicated systems of flow equations, the need

for maximizing accuracy, efficiency and robustness for
a wide wariety of problems still remains the foremost

concerns. Hence, the quest for the ultimate numerical
flux scheme continues.

Since the inception of the AUSM scheme in 1990, 3

it has been adopted by researchers worldwide. It

has been proven to be accurate, simple, robust, and

easy to extend to other types of conser_,ation laws,

thus providing an attractive alternative to the existing

schemes. In spite of the enormous progress achieved,

deficiencies have been experienced, typically the post-

shock overshoots and pressure oscillations along the

transverse direction in the boundary layers, as sum-

marized previously. 4 Several attempts have been made

over the last ten years, e.g., Refs. [1,4-10] to improve the

original scbelne :_ and in general, some successes have

been achieved. Nowvarious versions of the AUSM-family

schemes have been incorporated into both research and

commercial codes. In this paper, we will show some of

those results, including low Mach number flows, mui-

tiphase flows, and DNS calculations.

As evident in Ibis paper and others, the numerical

inviscid flux (which for the sake of simplicity we will

hereafter refer to as mnnerical flux) plays a central role

in effecting the success of a calculation, especially with

regard to rolmstness and accuracy. Furthermore, we
show in Ref. 2 lhaI the mass flux plays the central role
in the construction of a robust and accurate numerical

flux that is simullaneously free of anomalies such as

the odd-even &,coupling and "carbuncle" phenomena.

This become oh,at by l-ealizing that the mass flux is

common _o t he c.nve('tive part of every conservation

equation of the [h,id flows.

This paper is organized as follows. First, we will

take a broad approach to constructing the AUSM

schemes, beyond _he original one. We will examine

in turn tim mass flux and the pressure flux. Next,

we will present the recently-introduced concept of a

numerical speed of sound, which allows for a unified

formula valid for the entire speed regime. It also lends
itself conveniently to the extension of the schemes to

deal with multiphase/multifluid flows. Examples of
applying the AUSM-family schemes t.o various types

of flows will be shown. Finally, we will propose a fur-

ther development in regard to pressure flux, along with
walidation tests to demonstrate its effectiveness.
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Equations of Conservation Laws

A set of equations of general conservation laws is
considered:

Q(_t) + dirt1 _(t') -.- 1F_,kl) = S. (1)

We will denote by an overhead arrow ..... the vectors
associated with the Cartesian coordinates in three di-

tnensions. The conservat ire variables are given in Q(_'I

where the superscript k(= 1,2, ...) is introduced to in-

elude muliifuid models, often adopted for describing
rmdtiphase flows. !l' r_, The inviscid and viscous fluxes

are denoted respectively by F (k) and Fv (_'), whose

definitions are omitted herein since they are rather

standard. However, the source terms are dependent

upon the physical problems studied. For multiphase

lows, they can contain terms describing interracial bal-
ances of mass. momentum, and energy transfers due

to phase differences�changes. W(, include this option
because examples will be given later in the paper.

During the 90s, a great deal of interest has been
focused upon the development of a (local) precondi-

tioning method to improve the convergence rate in the

low Math number regime. This is accomplished by

premultiplying the time-derivative term with a condi-

tioning matrix r.

r-'(*" = s. q(*) = rtdt +dirt ff!_') -'- (,,)_ .

(2)
Several forms of the local preconditioning matrix F

have been proposed in the literature, e.g., Refs. 13-16.
The discretization of viscous terms is rather stan-

<lard and is generally done with centered sctmmes. On
the other hand. treatment of the source terms varies

considerably and this subject is not so easy because

it is quite problem-dependent and the terms can be

extremely complicated. See for example the ones in-

volved in the fluidized bed. lr The subject is beyond

the scope of this paper and will not be dealt with
here. W'e shall restrict ourselves instead to the numer-

ical representation of itwiscid fluxes, which has been

a subject of intensive etfort by many researchers over

the past three decades.

Numerical Flux: AUSM-Family

How It Began

The 80s saw the rise of two classes of upwind

schemes, namely the fux-vector and flux-difference

schemes. The _-an Leer scheme belongs to the former

and is perhaps the most robust one among all for the

Euler equations, aside from a slight disadvantage in the

shock resolution compared to the latter. Especially, it

endures the positivity test and is free from shock in-

stabilities, in addition to its algorithmic simplicity and

generality. Interestingly, these properties served well

during the era of revived interest in the hypersonic

flight, e.g., the NASP program in the US and similar

programs in the other countries. As more confidence

has been gained by the CFD community in dealing

with complexities in flow fields as well as in geome-

tries, CFD has flourished and naturally Navier-Stokes

solutions now have taken the cent.er stage. The paper
by Van Leer eta]. Is poims out _hat the flux-vector
schemes are diffusive for the Navier-Stokes calcula-

tions, as illustrated in the 1D conical viscous flow

where an incorrect wall temperature was predicted

along with a thicker boundary layer. See Fig. (la).

This spelt the downfall of tim flux-vector schemes.

In an attempt to resuscitale his scheme for the 90s_

Van Leer injected the flavor of flux-ditference split-

ling, as first suggested by H/inel and Schwane, 19 in

the CFD symposium held at NASA Lewis Center in

1990.1 The improvement due to this new idea is clearly

demonstrated in Fig. (lb), showing the wall temper-

ature (:lose to the correct, vahte of 13.7 (Pr = 1.0),

but unfortunately afflicted with pressure irregularity

at the edge of the boundary layer. It appeared that
the flux-vector scheme was a phoenix, the catalyst for

its rebirth being the combination with flux-splitting

scheme. So Van Leer asked the question: Can pure

flux-vector splitting be saved? The key word is "pure"

and the answer may be still up in the air. But the ques-

tion can be rephrased as: Can the Van Leer splitting be

engineered so that good "genes" are kept.? The answer

is very likely. Hence, research started and the original
AUSM scheme a (presented in this conference the first

time in 19912°) began to take shape. As a result of
this quest, tim AUSM scheme gives the temperature

profile in excellent agreement with the solution by the
Godunov scheme. 21

How it is shaping up

In this section, we will look at the algorithm in-
volved in the AUSM-family schemes and the new de-

velopments. For more details and other numerical

properties, the reader should consult with the cited
references.

As a first step common in the AUSM schemes, we

explicitly split the inviscid flux (written in three di-

mensions) into two parts:

= _) ÷ P = rTz_,+ P, (3)

where

• P?7I_ = , ¢ = (1,u,v,w,H) r, P = (O, pi-',pj, pYc,O)T.
(4)

1This occasion brought together the fathers of two flux-vector
splittings, Joe Steger and Brain van Leer, ",although .Ioe r,dked
about an entirely different subject-the chimera method. My
family and I had a great de',d of fun with them in my home that
evening; the fun of course was heiglttened with Brain's playing
piano, especially performing Joe's favorite piano and orchestral
piece, Symphonic Variations by Cesar Franck.
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Fig. 1 Hypersonic conic flow, M_ = 7.95, 0_o.e/2 =
10° and Re_ = 4.2 x l0 s .

The first term in 15 is tim convective flux file} indi-

cating the convection of g, by the mass flux rn and the
second term is the pressure flux 15, containing nothing

but the pressure. It is noted that the conserx_ation of

the total enthalpy is guaranteed if H, instead of to-

tal internal energy (E), is contained in W. Halt and

Agarwa122 split H into E and p/p and put them re-

spectively in the ¢ and 15 terms and called it the WPS
scheme.

In terms of the component fluxesin the directions

ofx,y,and z,we have

.Q / _ ~= (m,w+P_)i-r(_yO+Py)]_-(¢_=¢+P.)f;. (5)

where

rm = pul, Pl = (O, Pdt.,Phtv,Phzz,O) T, I = x,y,z.
(6)

In a control volume, the mass flux r_Zn through a

control surface element having a urfit normal vector

fi = (n=, n,u, nz) is given by

,;<= = (r)

And the associated flux becomes,

F,, =J< _, _- P.,, P,, = p(0, n,,,n., n:,0) T. (8)

Formally, this equation looks the same as that along
an individual Cartesian coordinate direction. Hence,

a_ each control surface, tim mass flux is treated in an

one-dimensional fashion. At the discrete level, this

is also what one needs to do for defining tim flux at.

the interface in a finite volume. Hereafter, we will as-

sume that this local orientation has been accomplished

and the velocity vector (hence mass flux) has been de-

composed into components normal and parallel to the

surface vectors _. Therefore, the subscript "n" denot-

ing the normal component will be dropped.

From the above equations, the principal quantities

in Fn are again the convective flux and the pressure

flux. The distinction of these two fluxes gives rise
to the basis for the development of the AUSM-family

schemes. Since the mass flux appears in all equations,

its effects will be felt by all the variables. Hence, we
believe that it is desirable to observe this fact at. the

discrete level as well when devising a new scheme. Sig-

nificant benefits can be derived as well. For example,

the numerical dissipation term is scalar even for the

system of equations; it. is just as easy to add more

conservation equations insofar as the numerical flux is
concerned.

It is possible to write a numerical flux, mimicking

the expression at the continuum level, in terms of a

common mass flux in the following general upwind
form.

fl/2 =r_q t2 tbL/R + Plf2

" + - (9)
= ntl/2t_'L -- r_ll/2_'R -- Pl/2-

Here the contributions of tbL and _'n are weighted by
• -{- • --

the split, masses (nh/2, mu2), which must follow the
consistency requirement,

r_q/'2 = '_q/2+ '_h/'2 - (10)

This fact is automatically satisfied by the first, element

of f. One can rewrite Eq. (9), using Eq. (10), as

1 1
fl/2 = _ I_tI/2 (@'L@I_'R)---_Dm(eR--I_'I.)+Pl/2, (11)

The dissipation term, D._, is

e- +.

Dm= nq/2 - r_ql 2 . (12)

The subscripts "L" and "R" are understood to mean
the cell centers on either side of the interface at which

NASA/TM--2001-210977 3



thenormalvectoris assumedto pointfrom "L" to

e+ e-

The quantities (mt/.,.mi/.,)•++ . are required to satisfy
these conditions,

For the AUSM+: we first define the interface Math

number

M,/2 = .AII_)(AfL) --+'_)(MR), (1N)

.+

(71ll/2) ]> 0, (?_Zl/2) --< 0, (13)

so that they provide proper upwinding, thus ensur-

ing stability. In the AUSM-family schemes, these two

variables are mutually exclusive, i.e.,

then

+/'l,fi+/2 --_ 2(+_[1/9 --Ii_/'I/2[). (19)

Now for the AUSMD\': we first define tim interface

split Mach numbers,

.+

(mr/2) (+_tx/_) = 0, (14)

It must be noted that the flux expressed in the form

of Eq. (9) implies that the numerical dissipation is
of the scalar, rather than the matrix form, because

.-f-

lhe same factors mb_ 2 are applied throughout for all
conservation equations. The flux difference splitting

schemes are known to belong to the category of matrix

dissipation. On the other hand, the category of scalar

dissipation encompasses several existing schemes other

than the AUSM-family schemes, such as central dif-

ferencing with artificial damping, the \:an Leer flux
vector scheme, the HLLE scheme, hideed, there are

several attractive properties associated with the scalar

form of dissipation. From the algorithmic viewpoint,

it offers simplicity, efficiency, arid generality allowing
for an easy extension to other systems of equations.

The 1991 AUSM scheme has served well by laying

out the basis for further developments. One of the im-

portant developments is the concept of common speed
of sound, which makes an accurate resolution of con-

tact. and shock discontinuities possible for both steady

and unsteady flows. As a result, two new members

of the AUSM-family were generated, We shall in this
paper, specifically concentrate on a unified formula-

tion encompassing both the AUSM + and AUSMDV
schemes.

In what follows, we will give some basic formulas
used to define the mass flux. To facilitate the discus-

sion, we first define the following split functions.

= I(M _+_IMI),
(15)

{ if IMI > 1,M >IM)= = otherwise,

, and

t :1: ,

"_" .'_/[ ( i ) (-_1),

(17)

The numerals in the subscript of ,_), 3d(2_,-_,_d(4 ),

and P(_)÷ indicate the degree of polvnomials.

Using a common speed of sound al/,)_ to define ML =

u,_L/al/2 and +_,It_= una/al/2.

r
M_,>+ '* + (1 - _1/,_)M(,>(,_/LII¢){= - , ,+ + +

(20)
together with the blending functions,

2f,./,

w:/2- f,+ + f , f =p/p. (21)

Then, the interface Math number is

= + (22)

It, is noted that the constructiorl of the interface split

Math numbers ._i[_2 in the AUSMDV scheme is some-

what similar to that in the Van Leer's flux scheme,

one might then wonder if the AUSMD\ r would be also

afflicted with the same shortcomings. To the cred-
its of the variables. ,,'# varying with flow _.ariables,

they make AUSMDV an accurate scheme for capturing

contact discontinuities, hence appropriate for viscous
solutions.

We stress again that a common speed of sound

ai/2 : (/(UL, Utl)) is used in the formulation in defin-
ing the "L" and "R" Mach numbers and in Eq. (9).

In Ref. 6, we give a special formula for all2 so ttlat
an exaci capturing of a stationary normal shock is

achieved. Otherwise, any averages of the "L" and "R"

states should be appropriate. More importantly, this
possibility of flexibly allowing other definitions of the

common speed of sound opens a very rewarding op-

portunity, as will be discussed later.

Now the mass flux is immediately available by using

the quantities ,'iI_e:

'_+ = all'->( p' A[52 +- PRM52) (23)
= ½alI2[MI/2(PL + Pn)- Dp(pl¢- PL)]

(16) We remark that a clear difference between the AUS-
MDV and AUSM + schemes, insofar as 7_tis concerned,

is in the definition of A[_2.
if IMI _ 1, It is easy to show that:
otherwise.

{ t3.Ii1:_1 AUSM+ (24)Do = M_ - AII_ 2 AUSMDV

and

3,[_M_,, 2 { -= 0 AUSM + (25)< 0 AUSMDV

NASA/TM--2001-210977 4



Tiledissipationcoefficientin the convective flux, in

Eq. (11), is now explicitly given as

Dm= I r_q/z I (26)

We can also rewrite the mass flux in the most general

form,

J_,/2= <JO - .4D(UL, UR). (27)
",) .

where (_.) is a sort of centrally weighted aver-

age, but the detail is not important for our discus-

sion. However, we shall focus on the dissipative term

D(UL,UB) which can be further expanded in terms

of differences of primitive variables U = (p, V,p)V" as

follows.

D = 1-)t;_(U) ,:xp+ _/)(", _(U)_,_ - _(_ (U)_p,
l

(2s)
where U(UL,UR) are some mean quantities, and

the difference operator is At.} = (')n - (')L-
It is shown in Ref. 2 that the fact whether the

pressure dissipation coetficient DIp) vanishes for all

conditions plays a decisive role in determining the oc-
currence of the anomalies in shock instabilities.

Finally, another important variable is the pressure

flux, which may be written as

P,/2 = P,/: (0, nx, n_, nz, 0) w. (29)

Clearly, all one needs in tim pressure flux p,/,_ is simply

the definition of Pl/z.
In all the AUSM-family schemes, the interface pres-

sure has been simply given by

p,, = P(+I(ML)p,. + P(2j(mn)pR. (30)

As simple as it may seem, there apparently are

enough opportunities to further enhance the AUSM-

family. A new version of the pressure flux will be
presented later.

The accuracy of the AUSM + scheme was thor-

oughly established by Darraeq et al. in Ref. 23

in which they have done studies of grid refinement

and spatial order of accuracy for several airfoil flows,

against the measured data. Tables 1 and 2 present.

the comparisons of calculated results for 2D and 3D

turbulent, flows. The3' concluded that ':for all runs the
AUSM + predictions agree better with the experimen-
tal data than results obtained with the Roe scheme."

In general, the differences between predictions from

these two schemes become more apparent, in the pre-

diction of flows near the leading edge on the suction

side. It also shows that AUSM + solutions converge to

the grid independent, solution faster than those of the

Roe splitting.

These results, along with those from my own and

others, seem to suggest, that the AUSM schemes (es-
pecially AUSM + and AUSMDV) yield little numerical

Table I Comparison of lift and drag coefficients for
the RAE-2822 airfoil, M'_--0.73, a=2.79 °, Re_ =
6.5 x 106,Baldwin-Lomax model. (ReL 23)

Scheme Order Mesh CL Cn _, CD tot
Roe 2nd coarse 0.7755 0.0153 0.0209
AUSM + 2nd coarse 0.7931 0.0144 0.0200
Roe 3rd coarse 0.7814 0.0136 0.0192
AUSM + 3rd coarse 0.7961 0.0133 0.0188

Roe 2nd fine 0.7916 0.0133 0.0189
AUSM + 2nd fine (I.8046 0.0132 0.0187

Roe 3rd fine 0.7927 0.0131 0.0187
AUSM + 3rd fine 0.8064 0.0131 0.0187

] Expt. 24 0.803 0.0168

Table 2 Comparison of lift and drag coefficients for
the ONERA-M6 airfoil M_=0.84, a=3.06°, Re_ =
1.749 × 107 Baldwin-Lomax model. (Ref. 23)

Scheme Order Mesh Cl. CD p CD tot
Roe 2nd coarse 0.2558 0.0168 0.0220
AUSM + 2nd coarse 0.2655 0.0164 0.0215
Roe 3rd coarse 0.2604 0.0141 0.0192
AUSM + 3rd coarse 0.2667 0.0138 0.0189

Roe 2nd fine 0.2782 0.0137 0.0188
AUSM + 2nd fine 0.2819 0.0138 0.0188
Roe 3rd fine 0.2791 0.0132 0.0183

AUSM + 3rd fine 0.2825 0.0132 0.0182

dissipation. Hence attempts have been made recently

for simulations touted as demanding high accuracy,
such as Large Eddy Simulation (LES), and Direct Nu-

merical Simulation (DNS).

Recently, Billet and Louedin 2_ combined the AUSM

scheme with a very interesting adaptive limiter (named

triad limiter, _t,.i,d) to gain high accuracy for DNS-

type simulations of unsteady flows. The limiter is still

built upon the third-order accurate MUSCL formula-

tion, but the accuracy of the results rivals that of the

higher-order schemes. Advection of a Taylor vortex is
simulated using the AUSM-_t_i_a scheme. 2'5 and the

velocity and pressure profiles, shown in Fig. 2, are

in excellent agreement with those from a sixth-order

accurate Hermitian scheme. Also Fig. 3 displays the

time development of a aD mixing layer using the same

scheme, showing a nearly identical result as that from
the DNS.

Other DNS/LES calculations, for example, can be
found in Ref. 26-28. There appears a common strategy

in the simulation of low speed flows, insofar as using

the AUSM schemes is concerned. That is, the pressure

term is modified by replacing it with a simple average

of neighboring pressures. This seems to have worked

well, giving smooth solutions without even adding nu-

merical dissipations. However, this simple replacement

gives rise to a smeared shock when applied to super-
sonic flows. Nevertheless, what this indicates is that

there are still some things to be done in the area of

NASA/TM--2001-210977 5
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pressure splitting. This is the new development yet to

be disclosed later in this paper.

In what follows, we will discuss another important

chapter about the AUSM family. This is the extension

to tile low Math number flows and something other

than the aerodynamic flows, for example, multiphase
flows.

As it has become known during last decade that

the detrimental deficiencies in forcing the compress-

ible upwind codes onto solving low speed flows are :

(1) extremely slow or stalled convergence, more so as

the flow sp_d decreases and (2) tim flow solutions

can be globally incorrect(ratimr than just locally as

in the case of smearing shocks). These two phenom-
ena are not related because the first one originates at

the continuum level, depending on the form of govern-

ing equations being solved, irrespective of whether the

scheme is centered or upwind. However, the second

one is inherently tied to the upwind scheme where the

eigenvalues, strongly depending on the usage of the

speed of sound, are employed.

In the 90s, active research has been conducted to

conquer tim first problem, in the name of local pre-

conditioning, such as those by Van Leer et al., 14
Turkel, 13 and Merkle, 15 and their subsequent publica-

tions. While there are differences in approaches, they

all attempt to achieve the same objectives of making

the eigenvalues of the new system of equations, Eq.

(2), the same order of magnitude. A condition num-

ber ^- defined as the largest ratio of eigenvalues,

lui +
- _,oc, as l'u] --+ O, and a held fixed.b,I

(31)
is a useful measurement,. Clearly there is a large dis-

parity of wave speeds as }ut --+ 0 and as a result, this

has been identified as the source of slow (or no) con-

vergence.

In the preconditioning strategy, one can think of

seeking to modify the system in such a way that the

corresponding speed of sound would be altered to be-

have like lu} as it approaches zero.
Consequently, we will define the numerical speed of

sound by

& = f(M; M.)a, (32)

where the scaling factor may be of this form,

f(M M,)= ,/(1- :t't_,)'_ _ +4A'I_
1 + M.2 , (33)

and the reference Mach nmnber,

M, z = min(1, max(M 2, M'2co)). (34)

The cutoff parameter Moo is introduced to prevent a

singularity at stagnation point. It is a user-specified

parameter and M2co = 10 .4 has been used. Details can
be found in Ref. 29.

Now the condition number becomes,

+ a
÷O(1), whileS-+0, aslut_0. (35)

NASA/TM--2001-210977 6
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Fig. 3 3D mixing layer. (Ref. 25)

That is, the condition number remains order of unity

at low speeds. The numerical dissipation based on this

new speed of sound now scales with the local speed lul,

instead of the local speed of sound a. As a result, the

accuracy can be restored as it is applied to low Mach

flOWS.

Now we can define the new Math numbers based on

this numerical speed of sound _ as

- UL/R (36)
A_fL l lt --

and these would be the entries to the equations for

M(4) and P(5)- This version isthen denoted with suffix

a_ such as AUSM+-a.

Now we show the results performed by Mary et

al. 3° using the low Mach number version of the

i

1

J

s

/

25 50 75 100
time

a) Snapshot of vor- b) Time history of vorticity

t icity, thickness.

Fig. 4 Comparison of solutions for subsonic com-

pressible mixing layer, thlrd-order accurate so-
lutions of three different time step sizes (At =

0.03,0.06,0.4 (shown by ...) are compared on tile

same number of grid points with that by the sixth-

order Hermitlan scheme (denoted by [:3[3). Results

indistinguishable.from two small time steps are

(Ref. 30)

13- 'a

1,

C_0S "

0_.

3_

I

_ _ ! r

_ _ 1 ............................. _ 1 i_

_as !

x,

a) Initial setup, b) After interaction.

Fig. 5 Interaction of a Gansslan temperature spot
with a shock. Comparison with the 4th order accu-

rate WENO scheme (denoted by [71::]) with the 3rd
order AUSM + solutions with three different values

of the limiter compression parameter O. (Ref. 30)

AUSM + scheme with a third-order accurate spatial

interpolation. Figure. 4 shows that the results of

a subsonic compressible mixing layer are in excellent

agreement with a sixth-order Hermitian scheme on the

same number of grid points, hence demonstrating the

accuracy of the AUSM + scheme. Another example,

given in Fig. 5, compares the result with that of the

4th-order accurate WENO scheme for a temperature

spot interacting with a shock, again revealing the high

accuracy of the AUSM + scheme.

hnplementing AUSM+-a in the code results in a

significant improvement not only in solution accu-

racy, as seen above, but also in convergence rate as

well. Another unforeseen but pleasant consequence

is that the pressure oscillations, observed along the

transverse direction in the viscous layer when using

AUSM + scheme, are no longer there. This results

from the fact the much reduced numerical dissipation

NASA/TM--200 ! -2 i 0977 7



a)

b)

c)

Fig. 6 Pressure contours for the shuttle external
tank problem for _[o_ ----0.01. a): using the standard

AUSM + at N----6400 time steps; b): using numer-

ical speed of sound at N=1000 time steps, and c):

magnified view near the nose.

now scales properly with the pressure variations, as

seen in Fig. 6.

Another case in point is the application to a 3D

low speed flow over a high-lift three-element trap-

wing configuration. The flow conditions are: Mo_ =

0.1498, Reo_ = 14.7 × 106 and angle of attack of 20

degrees. The computational geometry model con-

sists of a body pod, a wing, a full-span slat, a full-

span flap and the tunnel walls, as displayed in Fig.

7. Rogers et al. performed an extensive numerical

study of the acrodynamic characteristics of this con-

figuration using the preconditioned version of the Roe

Fig. 7 Trap wing model in a wind tunnels tile

tunnel grid is plotted every fourth grid point.

scheme in tile OVERFLOW al code. The effectiveness

of the AUSM+-a scheme was tested for this configu-

ration and details will be given in a separate paper, a:

Tile calculation 2 was also performed with the OVER-

FLOW code, with the Spalart-Allmaras one-equation

modet. 33 The pressure distributions at various span-

wise locations are compared with the experimental

data in Fig. 8 and they are in excellent agreement.

The vortices generated from the wing tips and the

body pod are illustrated with the particle traces dis-

played in Fig. 9

Recently, the AUSM-family has been extended to

the multiphase flow calculations, e.g., in Refs. 34 36.

PailD.re et al. solved a system of two-fluid models

with interracial source terms included. Several fea-

tures that are different from the usual equations for

aerodynamic flows add complexity significantly. That

is, the system is no longer in conservative form because

of the presence of the source terms and the system

is not guaranteed to be hyperbolic because it admits

complex eigenvalues. Figure 10 displays the computed

evolution of an initially homogeneous mixture of liq-

uid water and air, under the action of gravity, moving

toward a complete phase separation at the final steady

state. The phase separation begins at the both ends

and gradually migrates towards the center, as illus-

trated by the evolution of void fraction of tire air, with

x measured from tire top; the pressure at the steady

state is essentially constant in the gas region, but in-

creases linearly in the liquid region, as it should. Next,

Palliate et al. also obtained results for a water/air

column oscillating under the gravity. The solution in-

eludes the effect of interracial drag. The void fraction

of air and the time variation of liquid velocity at. the

_Dr. Stuart Rogers of NASA Ames Research Center, kindly

provided the grid, the post-processing code for extracting the
surface pressure and consultations.
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Fig. 8 Pressure distributions.

bottom of the tube are shown in Fig. 11, displaying a

cyclic motion. The initially sharp profile of void frac-
tion is now smeared at t = 20, due to the interracial

drag.

Another example of multiphase flows involves a wa-
ter flow over a hemispherical cylinder. The flow can

undergo cavitation if the pressure difference ( cavita-

tion number, K = 2(poe - pv)/pocU_) is low enough.
Figure 12 shows the water density contours in a tur-
bulent flow under various cavitation conditions. It

clearly shows the phase transition between the liquid

and vapor states. As K decreases, the pressure in the

expansion region drops to the vapor pressure, resulting

in the generation of a vapor phase and the growth of
a cavitation bubble. Pressure recovery further down-

stream leads to the collapse of the cavity in a "wake"

region. The structure of the wake region is strongly
influenced by both the thermodynamic model and the

velocity field, which in itself is influenced by the tur-
bulence model.

Another recent accomplishment of using the AUSM

scheme has been reported in Ref. 17 by De Wilde et

al. for an extremely complicated set of equations and
flow patterns involving solid particles and gas phase in
an industrial scale riser with a diameter of 1.56 m and

a height of 14.434 m. The system is described by an

a) Particle traces from the body pod.

b) Particle traces from the wing.

Fig. 9 Particle traces.

unsteady 3D turbulent, two-fluid model. The source

terms include gravity, buoyancy, and stresses due to

gas-solid interactions. The solid particles along with
the gas, entered at velocities of 6.0 and 12.635 (m/s)

respectively, in an inlet at the bottom of the riser, and
the mixture exited at the top. Due to the inelastic

particle-particle collisions, flow instability is triggered

and a periodic slugging flow pattern was obtained by

them. Figure 14 displays the evolution of solid volume
fraction in one cycle. A perturbation is seen to origi-

nate at the top of the riser, grow underneath towards
the bottom of the riser, and reach the maximum extenl

at about 3.2 see and then move upward till it is blown

out at the top when t=6.4 see. Then the cycle contin-

NASA/TM--2001-210977 9
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Fig. 10 Phase separation test case. (Ref. 34)

ues. From the results, one sees a large scale motion in

the axial direction together with a radial variation in
each time frame. However, no circumferential asym-

metry was found for the conditions calculated. The
authors state that the oscillation frequency of 0.15 Hz

is in good agreement with that reported in literature.
The time-averaged result give distinct boundaries of a
cell-like structure.

The above has merely captured representative ad-
ventures of the AUSM-family schemes beyond aero-

dynamics. The DNS/LES calculations demonstrate

the accuracy inherent in the AUSM-family schemes,

rivaling that of the higher-order schemes. The multi-
phase flow problems are certainly far more difficult

to deal with, not only from the closure (modeling)
point of view, but also from the algorithmic one. The

source terms strongly couple variables associated with

all phases and give rise to an extremely stiff system.
Robustness of a numerical scheme is the key to the

capability of simulating these types of flows.

To add a contribution for the new millennium, I

shall present in what follows the result of a recent ef-

fort, with an aim at further improving the scheme's
robustness and accuracy. Up to this point, calculating

flows at low speeds often required adding a pressure-
diffusion term to the mass flux in order to enhance

convergence. This has been commonly done in the in-
compressible code to ensure pressure-velocity coupling.

In spite of its effectiveness, it nevertheless sterns purely

from numerical consideration. So the questions to ask

are: (1) whether this (adding the pressure-velocity
terra) is absolutely necessary? (2) if yes, whether this

is the only way? and (3) if not, what then?

open to atmosphere

O_Hatleg Ma_rnol_r

Voffi2.1 m/s =,,
i
_o,

a) Physical setup. b) Initial conditions.

Osciflatm. 9 MaDomot o[

i

i

L

c) Void fraction at t=20
S.

Fig. 11

p= 1051 k_tm'

i

O_dla_n_ Man_ete¢

velocityd) Liquid
x=lO m.

Oscillating manometer. (Ref. 34)

i0 = 20 killtm'
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Fig. 12 Density contours of liquid water flow over
hemisphere/cyllnder for various cavitation num-

bers. (Ref. 35,36)

The answer to (1), based on my experiences and

those reported in the literature, is that it is desirable

to have this sort of mechanism, although it may not
be absolutely necessary. Thus, question (2) leads to

finding an alternative, and the more difficult question

(3) will be left alone for now.

In AUSMDV, l the convective part of the momentum
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flux consists of blending the flux-difference and flux-

vector procedures (thus denoted with DV). A notable
advantage of tiffs strategy is that it gives smooth shock

profiles, e.g., in shock-shock interactions. The notion
was adopted in the AUSM+-W, 4 but its effectiveness

has never been extensively tested. This blended flux

can be recast and the extra terms can be reassigned to
the pressure flux, giving rise to a new pressure flux con-

taining a term proportional to the velocity difference.
This interpretation, however, has a sound cotmection

to the characteristic equations,

dx
dp ± padu = 0, along -_- = u ± a. (37)

An integrated form for the interface pressure for lul <
a is

1

p_/2 = _[(pL - p.) - p,/2a,/2(u. -_)]. (38)

Hence, we can beef up the pressure flux, Eq. (30) by
including tile velocity difference term,

Pl/2 = "_;)(A'fL)PL -_- P;)(MR)PR

-p& (M_)P(;)(M.)p,/2_/2(M. - M_),
(39)

where for the interface quantity P]/'2 we may use, e.g.,

(pL + p.)/2 (40)

The coefficient involving P_)(ML) and _(_)(MR) is
introduced to automatically transition between super-
sonic and subsonic conditions. The pressure now is

explicitly coupled with the velocity field by the addi-

tion of the velocity difference term. As M tends to

zero, the pressure flux reduces to a form similar to Eq.
(38), but with half of its coefficient,,

1 1

P,/2 = _[(P,. +;,)- -_Pl/2al/2( u" --un)]. (41)

AUSM÷-u

11:::1L
13.0

crJ

o

12.0

11.0

, i .

10"8.0 2.0

p/p_

!

4.00.0 10.0 T
TYir=

Fig. 15 Hypersonic conic flow.

To denote this new version, we use the suffix "u" (for

velocity diffusion) and call it AUSM+-u. Thus, when

_p29 is also included, the scheme reads AUSM+-up.

Or if the numerical speed of sound is also activated, the
version becomes AUSM+-au. Note that if AUSM+-au

is used, then the coefficient in Eq. (39) is scaled ilow-
ever, with the numerical speed of sound h. This is
just what. we want for low Mach number flows since

= O(u) as lul --+ 0 and hence the coefficient is
scaled by the magnitude of local velocity. More de-

tails concerning this latest development shall be given
in a separate paper, ar

In what follows we shall consider several benchmark

problems I usually used for testing numerical schemes.

They represent various facets encountered in typical
flow problems. We shall first consider one-dimensional
problems and use the first-order scheme.

First, we must require that the new pressure flux be

capable of correctly predicting viscous flows, such as
the hypersonic conic flow mentioned in the beginning.
The new scheme, AUSM+-u, as in the other AUSM-

family schemes, gives the correct solution, as seen in

Fig. 15. The reason that the velocity difference term

does not cause adverse effect is that tile velocity com-
ponents in Eq. (39) are those normal to tim cell face

and they are continuous across the viscous layer.

The complaint voiced commonly about the

AUSM + concerns the overshoots resulting from
strong shock-shock interactions. Figure 16 shows the

comparison of results from various schemes. The new

pressure flux AUSM+-u now gives a significantly im-
proved result and the AUSM+-up scheme completely

removes the overshoots, yielding results as good as

those by the AUSMDV, Roe and Godunov schemes.
It is a major success since the AUSMDV scheme in

NASA/TM--200 i-210977 12
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this regard. This test clearly indicates t,hat tile new

pressure flux formula is a worthy replacement of the

old one and will be used again in the following tests.

The second problem concerns a shock moving slowly

against a flow, as studied in Ref. 38. Figures 17

shows the strength of linear and nonlinear waves by

the AUSM +, AUSM+-u (AUSM+-up is indistinguish-

able and not shown), Roe, and Godunov schemes. It is
known that the Roe and Godunov schemes produces a

noticeable long wave trailing the shock, as seen in the
figure. The AUSM schemes however, perform quite
well.

The third problem is a shock moving through a con-

stant area channel in which the grid at the centerline is

perturbed alternately" at odd and even points, as pro-

posed by Quirk. 39 Figure 18 displays the result from
the new scheme, it like the AUSM + is clearly free of

any shock instabilities.

Next we will consider two two-dimensional super-

sonic problems using a third-order spatial discretiza-
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Fig. 20 Residual history for the shuttle external

tank at various Mach numbers•

tion. A supersonic flow in a ramp-channel is shown

ira Fig. 19. The pressure contours show a smooth be-

havior across shocks and the residual converges mono-

tonically, again reaffirming the effectiveness of the new

pressure flux.

Figures 20 display the comparison of the conver-

gence rates for different flow speeds between the two

schemes, AUSM+-ap _9 and the present AUSM+-au.

The convergence history by the new pressure flux is

essentially the same as tile AUSM+-ap scheme up to

N = 2400, but appears to have slowed down afterward.

The reason is not clear and will be further investigated

using different codes and for different problems. How-

ever, it must be noted that the solutions from these

two schemes are not distinguishable.

The final test is a bhmt body problem often used

by Radespiel. 4° This problem has several features to

a) New pressure flux,

AUSM+-au.

Fig. 21

_,_._-_

b) Blow-up view•

Blunt body problem, M_ = 10.

study. Tile grid 3 is clearly for the viscous calculations,

but is tested here for the Euler solutions. First, the so-

lution is free of carbuncle phenomena, consistent with

the conjecture given in Ref. 2 since there is no explicit

pressure diffusion term in the mass flux. Secondly, tile

pressure contours are smooth, not only near the wall,

shown it) the blow-up view near the stagnation region,

but also near the sonic line region.

Concluding Remarks

We have just seen a brief history of the AUSM-

family, having finished the first ten years from its

inception. It has seen both triumphs and setbacks

while facing realities and difficult tasks. Nevertheless,

man5; researchers have contributed in different ways

towards its growth. The question is whether it will

have the longevity to beat the odds in the future, to

see a even wilder world. I believe that it has the fun-

damentally right stuff, even though some turns and

twists are expected every time there is a new fron-

tier to be explored. In this brief tour, we have seen

the successes, not only in aerodynamics, but also in

the areas of DNS/LES and multiphase flows. Further-

more, the new pressure flux boosts the strengths of the

AUSM-family, having removed the overshoots behind

the shock-shock interactions-a major success since the

AUSMDV scheme in this regard. These should give us

sufficient confidence in its ability to provide needed

accuracy, efficiency, and robustness.

3The grid was provided by Prof. Rolf Radespiel, Braun-
schweig Technical University, Gerrnany.
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